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Republic of Germany 
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Abstract. The collective dynamics of particles in random energies and with a narrow dis- 
tributed random coordination number shows a dynamical transition. The characteristic 
macroscopic time scale averaged over the coordination number and the energy distribution 
diverges with an essential singularity, i.e. as the celebrated Vogel-Fulcher law which is 
widely used in the treatment of experimental data for the viscosity and relaxation times of 
glass forming liquids. 

The dynamics of particles near the glass transition of a fluid is extremely slow. This is 
similar to any phase change, where, when approaching a critical temperature T, the 
characteristic time scale diverges as a power law of the form (critical slowing down) [1] 

t - f ‘  - ( T  - TJV7 (1) 
where f is the correlation length, v is the correlation length exponent, defined by 

5 - (7- - 7-J” 

and z is the dynamic exponent. 
Such a dynamical scaling analysis is only possible for pure equilibrium phase tran- 

sitions. Freezing transitions or glass transitions belong to the class of non-equilibrium 
phase changes, and if power laws, such as given in (l), are applied to real values for the 
relaxation time t in a glass transition or spin glass transition the exponent zv turns out 
to be unusually large [ 2 ] .  An empirical formula for the characteristic macroscopic time 
scale has been suggested a long time ago by Vogel and Fulcher (see [3]), i.e. 

- exp(A/(T - To))  (3) 

which diverges more strongly than any power law as given in (1). To is a temperature 
lower than the glass transition temperature [4]. Many experimental data have been fitted 
with success to this law [4,5]. 

From a theoretical point of view it has been found difficult to derive the Vogel- 
Fulcher law from a simple physical picture [6], but progress has been made and it was 
shown that the essential singularity appearing in the Vogel-Fulcher law is connected to 
cooperative motions [7-10]. This has been demonstrated explicitly in a model consisting 
of stiff polymeric rods. The number of rods which participate in a well defined manner 
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A Figure 1. The discrete distribution is approxi- 
mated by a Gaussian around the most probable 
coordination width. number zo with the appropriate IIL 20 

in a cooperative motion diverges with a power law if the freezing transition, which 
produced the Vogel-Fulcher law, is approached [7,8]. 

In this letter we show that such behaviour can be very general, and the Vogel-Fulcher 
law can be derived by simple arguments. We need four basic facts from the physics of 
the condensed glassy phase and the glass transition phenomenon, which are listed in the 
following. 

(i) The characteristic time scale for the simple hopping of an arbitrarily chosen test 
particle out of an energy valley with depth E is given by the Arrhenius law 

where /3 is the inverse temperature, i.e. /3 = l /T(here units with the Boltzmann constant 
k ,  = 1 are chosen). 

(ii) The energy barrier E depends on the number of particles which surround the test 
particle, i.e. if the particle is in an environment of z particles which form a cage, it is 
easier for the particle to jump out of this cage than, for example, from another one 
where it is surrounded by z + 1 particles. Thus we have 

For simplicity we assume in the following E ( z )  = z E ,  i.e. a linear relationship for the 
energy and the coordination number [ 101. 

(iii) It is known that the coordination number in amorphous systems is not a fixed 
quantity and varies from place to place [ 111. It is itself a random number. The distribution 
around some mean value zo has a very narrow width. We assume here (for simplicity) a 
Gaussian distribution for the coordination number, i.e. 

P(z )  = [1/2n(Az)2]1/2 exp - [ ( z  - z0)*/2(Az)’]. ( 5 )  

This distribution is an approximation and the result of the central limit theorem. An 
example for a real distribution would be discrete and is sketched in figure 1. It is sharply 
peaked around the most probable coordination number zo. The width Az is of the order 
of 1-5 particles and the mean value of zo is of the order of 14 in three dimensions [ l l ] .  
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(iv) The energy E itself is a random number in amorphous systems, such as glasses 
and spin glasses. The phase space can be visualised as an irregular many-valley picture 
[12]. The energies are random and for simplicity we assume Gaussian distributed, i.e. 

P(E)  = (1 /27~E;)~/~  exp(-E2/2Ei). (6) 
This is similar to the random energy model [ 131, 

average 
The characteristic time scale, which is relevant for macroscopic purposes is the 

z ( P )  = (z(z, E))  = j dP(Z) j W E )  exp(PzE). (7) 
o s z s m  -zsEsa 

The average over the energies can be done analytically, while the exact average over the 
coordination number leads to an error function, since the integration range is limited by 
0 as a lower bound. If we extend the coordination number formally to infinity we make 
a slight mistake. But we note that the error which is made by extending the integration 
limit to --to < z < is small, since the distribution of the coordination number is sharply 
peaked around zo. The assumption that the coordination number is infinite is crude but 
in terms of the cooperativity which is present in glass forming systems, we know that a 
lot of particles have to be moved before one special particle can move [7,8]. Then we 
approximate the distribution function of the coordination number by a Gaussian of 
the appropriate width in order to carry out the calculation analytically. For other 
distributions, numerical computations have to be done. But it has to be remembered 
that the use of a Gaussian is a crude modei. Thus we have 

The integrals converge for temperatures which satisfy 1 - PE,Az > 0 and the final result 
is 

(8) 
The second term in the exponential can be neglected near the dynamical transition. 
Equation (8) can then be rewritten as 

z(/3) = exp{P2ziE;/2[1 - E ~ ( A Z ) ~ / ~ ~ ]  - Hog[l - /32Ei(A~)2]}.  

z ( T )  = exp([(zo/T)’E~/2]/(1 - AzEo/T)(l + AzEo/T)}. (9) 
With the definition To = AzEo and the approximation 1 + To/T = 2 near the transition 
at T = To, we find the Vogel-Fulcher law for the relevant time scale 

Note that the transition z 4 comes at To = AzEo, i.e. the critical temperature is given 
by the fluctuation of the coordination number Az, which is present and characteristic 
only in amorphous systems. Note that the essential singularity is a result of the fact that 
we took the coordination number to infinity. If we had avoided this, we would find no 
singularity as in Bassler’s work [14] and we would have to define the glass transition 
where the relaxation time exceeds a certain value. The result of Rassler will be reviewed 
below in this letter. 

To summarise we note that two stochastic quantities in random systems, i.e. the 
energy and the coordination number are responsible for the appearance of the Vogel- 
Fulcher law, which shows an unusual essential singularity. A special case of this has been 
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discussed recently by Bassler [14] and by the present author [9]. (This is also contained 
in our simple but more general discussion.) There it was considered that the energy is 
random and has a Gaussian distribution but the effect of the fluctuating coordination 
number has been ignored. This case corresponds to our general formula, if we put Az = 
0 in (S), i.e. the coordination number is fixed and does not fluctuate. The result is then 

z ( T )  - exP[(T6/T)21 (11) 
with T i  = z0E0 which is the result of Bassler [9,14]. Note that a dynamical transition 
in this model at finite temperatures is not present. Such a system freezes at T = 0. As 
noted above the transition can be defined where the relaxation time (or the viscosity, 
which is proportional to the relaxation time) reaches a certain value, i.e. if the viscosity 
is larger than 1013 P, if this model is applied to the glassy transition. 

Another interesting question is the macroscopic relaxation function q(t)  in the 
context of this random energy and random coordination number model. q(t)  can be 
defined as follows. Suppose that each of the jumps out of a valley with depth E ( z )  = Ez 
corresponds to a Debye subrelaxation function of the form q(t ,  E ,  z )  - exp[ - t / r (E ,  z)] 
and the macroscopic one is the averaged relaxation function, i.e. 

q( t> - (exp[-t/z(E, z)l). (12) 
The averages are not simple to calculate and only asymptotic expressions can be given. 
The integrals, which occur in the averaging calculation are of the form 

f(t) = J duexp(-texp(-/3u) - au2) 

exp( -u2 )  = 1 d q  exp(2iVu - q2) .  

(13) 

which cannot be calculated analytically, but one can parameterise the exp( -u2) by 
‘uncompleting the square’, i.e. 

(14) 

The integration is then possible and in the limit of large times t -+ x, we find the relaxation 
function to be 

q( t )  - t-r/AzEo exp(-log2 tTlzoE0). (15) 

Note that the decay in this relaxation function is stronger than the power law but 
broader than the single exponential decay. Similar relaxation functions have been found 
previously in the context of hierarchical relaxation [ 14-16], in one-dimensional models 
[17], and in models with pure energy disorder [18]. More details will be given in an 
extended paper. 
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